Modeling masticatory muscle force in finite element analysis: sensitivity analysis using principal coordinates analysis.
نویسندگان
چکیده
Our work on a finite element model of the skull of Macaca aims to investigate the functional significance of specific features of primate skulls and to determine to which of the input variables (elastic properties, muscle forces) the model behavior is most sensitive. Estimates of muscle forces acting on the model are derived from estimates of physiological cross-sectional areas (PCSAs) of the jaw muscles scaled by relative electromyographic (EMG) amplitudes recorded in vivo. In this study, the behavior of the model was measured under different assumptions regarding the PCSAs of the jaw muscles and the latency between EMG activity in those muscles and the resulting force production. Thirty-six different loading regimes were applied to the model using four different PCSA sets and nine different PCSA scaling parameters. The four PCSA sets were derived from three different macaque species and one genus average, and the scaling parameters were either EMGs from 10, 20, 30, 40, 50 and 60 msec prior to peak bite force, or simply 100%, 50%, or 25% of peak muscle force. Principal coordinates analysis was used to compare the deformations of the model produced by the 36 loading regimes. Strain data from selected sites on the model were also compared with in vivo bone strain data. The results revealed that when varying the external muscle forces within these boundaries, the majority of the variation in model behavior is attributable to variation in the overall magnitude rather than the relative amount of muscle force generated by each muscle. Once this magnitude-related variation in model deformation was accounted for, significant variation was attributable to differences in relative muscle recruitment between working and balancing sides. Strain orientations at selected sites showed little variation across loading experiments compared with variation documented in vivo. These data suggest that in order to create an accurate and valid finite element model of the behavior of the primate skull at a particular instant during feeding, it is important to include estimates of the relative recruitment levels of the masticatory muscles. However, a lot can be learned about patterns of skull deformation, in fossil species for example, by applying external forces proportional to the estimated relative PCSAs of the jaw adductors.
منابع مشابه
Dynamic Modeling of the Electromyographic and Masticatory Force Relation Through Adaptive Neuro-Fuzzy Inference System Principal Dynamic Mode Analysis
Introduction: Researchers have employed surface electromyography (EMG) to study the human masticatory system and the relationship between the activity of masticatory muscles and the mechanical features of mastication. This relationship has several applications in food texture analysis, control of prosthetic limbs, rehabilitation, and teleoperated robots. Materials and Methods: In this paper, w...
متن کاملEvaluation of the effect of reservoir length on seismic behavior of concrete gravity dams using Monte Carlo method
In present study, the effect of reservoir length on seismic performance of concrete gravity dam has been investigated. Monte Carlo probabilistic analysis has been used to achieve a sensitivity of the responses to variation of truncated reservoir length in finite element model. The ANSYS software based on finite element method is applied for modeling and analysis. The Pine Flat dam in California...
متن کاملShear-Flexural Interaction in Analysis of Reduced Web Section Beams using VM Link Element
Reduced web section beams in shear-yielding moment-resistant steel frames are used for energy dissipating of earthquakes. The finite element analysis indicates that failure mode of these beams are governed by the combination of shear force and flexural moment. Therefore the analysis of frames with reduced web section beams needs consideration of shear-flexural interaction in those sections. In ...
متن کاملPropagation of Crack in Linear Elastic Materials with Considering Crack Path Correction Factor
Modeling of crack propagation by a finite element method under mixed mode conditions is of prime importance in the fracture mechanics. This article describes an application of finite element method to the analysis of mixed mode crack growth in linear elastic fracture mechanics. Crack - growth process is simulated by an incremental crack-extension analysis based on the maximum principal stress c...
متن کاملStability Analysis of Salt Cavern Gas Storage Using 2D Thermo-Hydro-Mechanical Finite-Element Software
Ensuring the stability and integrity of underground gas storage salt caverns is a very complicated subject due to the non-linear and time-dependent behavior of rock salts under complicated thermal and mechanical loading conditions. For this reason, pressure and temperature fluctuations in the caverns and their surrounding strata must be integrated into the analysis and the numerical tools that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology
دوره 283 2 شماره
صفحات -
تاریخ انتشار 2005